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Abstract
We investigate by means of Monte Carlo simulations the fully connectedp-state
Potts model for different system sizes in order to see how the static and dynamic
properties of a finite model compare with the, exactly known, behaviour of the
system in the thermodynamic limit. Using p = 10 we are able to study the
equilibrium dynamics for system sizes as large as N = 2560. We find that the
static quantities, such as the energy, the entropy, the spin glass susceptibility
as well as the distribution of the order parameter P(q) show very strong finite-
size effects. From P(q) we calculate the fourth-order cumulant g4(N, T ) and
the Guerra parameter G(N, T ) and show that these quantities cannot be used
to locate the static transition temperature for the system sizes investigated.
Also the spin-autocorrelation function C(t) shows strong finite-size effects in
that it does not show a plateau even for temperatures around the dynamical
critical temperature TD . We show that the dependence on N and T of the
α-relaxation time can be understood by means of a dynamical finite-size scaling
ansatz. C(t) does not obey the time–temperature superposition principle for
temperatures around TD , but does so for significantly lower T . Finally we study
the relaxation dynamics of the individual spins and show that their dependence
on time depends strongly on the chosen spin, i.e. that the system is dynamically
very heterogeneous, which explains the non-exponentiality of C(t).

PACS numbers: 05.50.+q, 05.10.Ln, 75.10.-b

1. Introduction

In recent years it has been recognized that the relaxation dynamics of supercooled liquids and
that of spin glass systems have many properties in common [1–4]. Of particular significance
was the observation by Kirkpatrick et al [5] that for certain mean-field spin glasses the equations
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of motion for the spin-autocorrelation functionC(t) are formally the same as the ones that have
been derived previously for the relaxation of particle-density-correlation functions of structural
glasses [6]. That result thus opened the possibility to find one common description for these
two classes of glassy systems: the spin glasses with quenched disorder and the structural
glasses in which the disorder is not included explicitly in the Hamiltonian.

One of the important classes of spin glass models is the Potts glass [5, 7–19], which
is a generalization of the Ising spin glass [20–27], where the spins σi can assume two
values (σi = ±1), to the case where each Potts ‘spin’ can be in one of p discrete states,
σi ∈ {1, 2, . . . , p}, p being an integer. Just as the Potts ferromagnet [28–30] is a ‘workhorse’
for the statistical mechanics of phase transitions, since it has served to test many methods
and to exemplify many concepts about the subject, one can expect the Potts glass to play
a similar role for the study of the glass transition in systems with quenched disorder or the
properties of liquids close to their glass transition temperature, since the possibility of changing
p allows one to describe different glass transition scenarios, e.g. from a continuous transition
to a discontinuous one.

It is important to note that in the Potts glass it is well established that for p > 4 one has
both a dynamical transition at a temperature TD , where the relaxation time associated withC(t)
diverges, and a static transition at a temperatureT0 < TD , where a glass order parameter appears
discontinuously, accompanied by a kink in the entropy (as well as in the internal energy). In
contrast to this known feature, for the structural glass transition the existence of an underlying
static transition, although proposed a long time ago [31,32], is still an open question [33–38].
Thus a study of Potts glasses should help us also to better understand structural glasses and
hence is a welcome addition to the great efforts made to identify which structural features
distinguish the solid glass from the liquid from which it was formed [6, 33–41].

Besides this interest in the Potts glass as a possible prototype model for the structural glass
transition, it can also be considered as a coarse-grained model for orientational glasses [42–44].
Experimentally, these systems are created by random dilution of molecular crystals, which has
the effect that at low temperatures the quadrupole moments of the molecules freeze in random
orientations [42]. If the crystal anisotropy singles out p discrete preferred orientations (e.g.
the four diagonal directions in a cubic crystal), a Potts glass model with p states may give a
qualitatively correct description of the system. And, last but not least, the Potts glass model
of course completes our knowledge about the different types of phase transition and ordered
phase that spin glasses can exhibit [22–27], which provides an additional motivation for the
great activity in this field [5, 7–19],

In this work, we use Monte Carlo simulations to study the Potts glass model. Our goal is
to clarify to what extent this interesting and non-trivial mean-field behaviour which is known
exactly in the thermodynamic limit, N → ∞, can be seen for finite N . In addition, we want
to elucidate the dynamical behaviour of the model in greater detail than has been done so far
and thus help to clarify the reasons for non-Debye relaxation in glassy systems.

In the present paper, we shall first define the model and introduce the quantities that
will be investigated (section 2). In section 3 we summarize what is known about the static
behaviour of the model and describe our pertinent numerical results. Section 4 is then devoted
to the dynamical properties in the high-temperature phase, i.e. above TD , and the finite-size
behaviour at TD , while section 5 is concerned with the dynamical behaviour of small systems
in the low-temperature phase. By following the relaxation of individual spins we are able
to also study the ‘dynamical heterogeneities’ [45, 46] at low temperatures. Finally, section 6
summarizes our conclusions.
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2. Model and simulation methods

In this section we define the Hamiltonian and the observables that we consider in this work.
Subsequently we give the details of the simulations.

The Hamiltonian of the p-state mean-field Potts glass of N interacting Potts spins σi
(i = 1, 2, . . . , N) that can take p discrete values σi ∈ {1, 2, . . . , p} is defined as

H = −
∑
i<j

Jij (pδσiσj − 1). (1)

The ‘exchange constants’ (bonds) Jij are quenched random variables which we assume to be
distributed according to a Gaussian distribution P(Jij ):

P(Jij ) = 1√
2π(�J)

exp

[
− (Jij − J0)

2

2(�J )2

]
. (2)

The first two moments J0 and �J are chosen as follows:

J0 ≡ [
Jij
]
av

= J̃0/(N − 1) J̃0 = 3 − p (3)

(�J )2 ≡ [
J 2
ij

]
av

− [
Jij
]2
av

= 1/(N − 1) (4)

where [· · ·]av denotes an average over all realizations of disordered bonds (while thermal
equilibrium averages will be denoted as 〈· · ·〉). The scaling of the parameters J0,�J with N

was chosen such as to ensure a sensible thermodynamic limit both for the spin glass transition
and for the ferromagnetic transition (which occurs for a certain range of values of J̃0). Note
that for p = 2 equations (1)–(4) simply reduce to the Sherrington–Kirkpatrick (SK) model
of a spin glass [21]. We also mention that the term

∑
i<j Jij in equation (1) is only included

for convenience, since it makes the mean energy of each system, i.e. for each realization of
the disorder, go to zero for T → ∞. For the present choice of the parameter �J , the spin
glass transition in the replica-symmetric approximation, within which one finds a second-order
transition for p < 6, occurs at a temperature Ts = 1 [7]. (Here and in the following we set
Boltzmann’s constant kB ≡ 1.) While for some choices of J̃0 the system exhibits a transition
to a standard ferromagnetic phase at a temperature TF > Ts , for our choice of parameters TF
falls far below Ts and hence ferromagnetic order is of no of interest here [7, 11].

There exists in addition a second transition to a different type of spin glass phase
(sometimes called a ‘randomly canted ferromagnetic phase’) [7,9], at a transition temperature
T2 which is given by

T2 = (p/2 − 1)/(1 − J̃0). (5)

For the choice of J̃0 given in equation (3) one thus finds T2 = 1/2. Hence this choice ensures
that at the temperatures of interest in the present study, T � 0.7, any effect of this second
transition on physical observables should be negligible.

For defining observables like the magnetization, the glass order parameter, and time-
dependent spin-autocorrelation functions etc, it is useful to choose a representation for the
spins that takes into account the symmetry between their p possible states. This can be
achieved by the so-called ‘simplex representation’ [29, 30] in which the p states correspond
to (p − 1)-dimensional vectors �Sλ pointing towards the corners of a p-simplex, i.e.

�Sλ · �Sλ′ = (pδλλ′ − 1) with λ, λ′ = 1, . . . , p. (6)

In our study we consider static as well as dynamical observables. Static quantities include the
energy per spin,

e = [〈H〉]av/N (7)
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and the spin glass susceptibility χSG, and also the spin glass order parameter distribution
function P(q). For defining a spin glass order parameter, we follow the standard method used
for Potts glasses [12,16,19] to consider two replicas α and β of the system, i.e. two systems that
have identical bond configurations, and to carry out for each of them an independent Monte
Carlo simulation. The order parameter tensor is then defined as

qµν = 1

N

N∑
i=1

(�Si,α)µ(�Si,β)ν µ, ν = 1, 2, . . . , p − 1. (8)

In an equilibrium simulation of a finite system with no external fields that couple to odd
moments of the order parameter, the symmetry is not broken. Hence it is useful to consider
the root mean square order parameter q defined as [5, 12, 16, 19]

q =
[

1

p − 1

p−1∑
µ,ν=1

(qµν)2

]1/2

(9)

and by calculating a histogram of q, i.e. by taking first the thermal average and then the average
over the disorder, one can estimate the above-mentioned distributionP(q). The second moment
of this distribution is related to the reduced spin glass susceptibility χ̃SG:

χ̃SG = N

p − 1
[〈q2〉]av = N

p − 1

∫ 1

0
q2P(q) dq. (10)

(Below we will discuss the relation between χ̃SG and the standard spin glass susceptibility
χSG; see equations (21) and (26).) If there is a second-order transition to a spin glass phase,
χ̃SG should show a divergence at the critical temperature. Further interesting quantities related
to the distribution P(q) are the reduced fourth-order cumulant [12, 16, 19]

g4(N, T ) = (p − 1)2

2

(
1 +

2

(p − 1)2
− [〈q4〉]av

[〈q2〉]2
av

)
(11)

and a quantity called the Guerra parameter [47]

G(N, T ) = [〈q2〉2]av − [〈q2〉]2
av

[〈q4〉]av − [〈q2〉]2
av

. (12)

The reason for introducing these ratios of moment is that they are useful in the context of
finite-size scaling analysis of phase transitions. They are defined such that forN = ∞ they are
zero in the disordered phase and non-zero in the ordered phase. In the finite-size scaling limit
the curves g4(T ), or G(T ), for different system sizes N should intersect in a common point at
the static phase transition point. In particular, G is a measure for the lack of self-averaging.

To study the dynamical properties of the system, we will mainly focus on the
autocorrelation function of the Potts spins:

C(t) = 1

N(p − 1)

N∑
i=1

[〈�Si(t ′) · �Si(t ′ + t)〉]av. (13)

Note that in thermal equilibriumC(t)depends only on the time difference t , i.e. it is independent
of the second argument t ′ occurring on the right-hand side of equation (13). In practice, for
the Monte Carlo sampling using the Metropolis algorithm [48], the thermal averaging 〈· · ·〉 is
a time averaging over the initial times t ′.

We have also considered a rotationally invariant order parameter time-displaced correlation
function CRI (t) which is defined as

CRI (t) =
[ 〈q̃(t)〉
〈q̃(0)〉

]
av

(14)
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with

q̃(t) =
[

1

p − 1

p−1∑
µ,ν=1

(q̃µν(t))
2

]1/2

and q̃µν(t) = 1

N

N∑
i=1

(�Si)µ(t)(�Si)ν(0). (15)

Note that q̃µν is not the same quantity as qµν defined in equation (8), since the latter involves
two replicas α and β. However, for t → ∞ the thermodynamic averages of the two quantities
are the same. This means that in this limit also q̃ and q, from equation (9), are the same.
Furthermore, we mention that the expectation value 〈q̃(0)〉 occurring in equation (14) is equal
to 1, as long as there is no ferromagnetic ordering of the system. It is important to realize that
CRI (t → ∞) is not zero, ifN is finite. This follows immediately from equation (15), since for
large t the quantity q̃µν(t) is of order 1/

√
N , and q̃(t), as a finite sum over the square of such

quantities, is hence positive and also of order 1/
√
N . From equation (10) one also concludes

that CRI (t → ∞) is of order
√
χ̃SG/N .

In our simulations, we have investigated five different system sizes, N = 160, 320, 640,
1280 and 2560. The number of samples used to approximate the quenched average [· · ·]av over
the bond disorder was 500 for N = 160, 200 for N = 320, 100 for N = 640 and 1280 and
between 20 and 50 for N = 2560 (depending on temperature). At not-too-low temperatures,
T � 1, the straightforward Metropolis algorithm was implemented [48], picking spins at
random and choosing randomly an orientation for them as a trial configuration. Depending
on the energy difference �E between the old configuration and the trial configuration, the
trial configuration was always accepted if �E � 0, else it was accepted with probability
P = exp (−�E/T ). For temperatures T < 1 the equilibrium configurations were generated
with the ‘parallel tempering’ technique [49–51]. These equilibrium configurations can both
be used to study the static properties of the model and as starting configurations to study the
usual Metropolis dynamics in equilibrium and thus to calculate C(t), although at very low
temperatures the relaxation is so slow that one cannot follow the complete decay of C(t) to
zero. The total computing time (in units of a single Pentium II processor with 400 MHz) used
for this study was of the order of 10 years.

3. Static properties of the ten-state Potts glass model

In this section we first discuss the analytic results for the static properties of the model in the
thermodynamic limit. Subsequently we compare them with the results of the simulations for
finite N .

If one calculates the free energy of the model given by equations (1)–(4) with the replica
method [20–27], (without allowing for replica-symmetry breaking), one obtains, depending on
the value of J̃0 but independently of p, either a transition to a spin glass phase (where the spin
glass order parameter q0 is non-zero) or to a ferromagnet (with a spontaneous magnetization
m0). Within this approach and close to a critical temperature Ts the free-energy density
f (q0,m0) can be written as follows [7]:

−f (q0,m0)/T = 1

2
r ′
(

1 − Ts

T

)
q2

0 +
1

6
uq3

0 +
1

2
rmm

2
0 +

1

6
umm

4
0 +

1

6
u′q2

0m
2
0 + · · · (16)

where with our choice of units Ts = 1, and r ′, u, rm, um, u′ are constants that are of no interest
to us here. If the parameters are chosen such that the transition that occurs at Ts is to a spin glass
phase, it is found that the order parameter distribution P(q) is a δ-function whose position
depends on T (we consider here only the case u > 0):

P(q) = δ(q) for T > Ts (17)
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P(q) = δ(q − q0) with q0 = 2r ′

u

(
Ts

T
− 1

)
for T < Ts. (18)

Note that the first term on the right-hand side of equation (16) can also be interpreted in
terms of the spin glass susceptibility3 χSG as 1

4χ
−1
SGq

2
0 . Thus close to Ts one finds for χSG a

Curie–Weiss law:

χSG = [
2r ′(1 − Ts/T )

]−1
T > Ts. (19)

The coefficient r ′ in equation (16) is given by [7] (a result coming from the expansion in q of
the free energy close to Ts)

r ′ = p − 1

2

(
Ts

T

)2 (
1 +

Ts

T

)
. (20)

We thus find for the susceptibility χSG around Ts (remember that Ts = 1 in our normalization)

χ−1
SG = 2(p − 1)

(
1 − Ts

T

)
T ≈ Ts. (21)

The difference between the standard spin glass susceptibility and the reduced one defined in
equation (10) is just the factor (p−1), related to the susceptibility of a system of non-interacting
spins.

It is well known [5,9,11] that, if one allows for replica-symmetry breaking, the prediction
that there is a second-order transition to a spin glass phase remains valid only if p � 4. For
p > 4, a new type of first-order transition to a glass phase is predicted to occur at a temperature
T0 which is higher than Ts . Although at T0 the order parameter jumps discontinuously from
zero to a value q0 > 0, there is no latent heat involved in this transition. Instead of equation (18)
the order parameter distribution acquires now a double-δ-function structure [5, 9, 11]:

P(q) = [1 − w(T )]δ(q) + w(T )δ(q − q0(T )) T < T0 (22)

with w(T ) = 1 − T/T0 for T → T −
0 . While it is possible to calculate q0 and T0 analytically

for p → 4+ (see e.g. [11]):

q0 = 2
7 (p − 4) + o(p − 4)2 T0 − Ts ∝ (p − 4)2 + o(p − 4)3 (23)

for integer p > 4 the correct values for q0 and T0 can be obtained only numerically [13]. For
example, for our case of p = 10 the predicted values are

T0 = 1.1312 and q0(T0) = 0.452. (24)

In the disordered phase, the internal energy per spin e and entropy per spin s are given by [7,13]

e = −p − 1

2

Ts

T
s = lnp − p − 1

4

(
Ts

T

)2

. (25)

and a high-temperature expansion gives [24]

χ̃−1
SG =

[
1 −

(
Ts

T

)2
]

T > T0. (26)

Within the replica-symmetric ansatz these expressions are correct for T > Ts . If one
allows for replica-symmetry breaking they hold only for T > T0. Although no explicit
analytic expressions for e(T ) and s(T ) are known for T < T0, their values can be calculated
numerically [13].

Finally we mention that within the replica ansatz (symmetric or broken), neither Ts nor T0

depend on the choice of J̃0 from equation (3), provided that the temperature TF of the transition

3 For the definition of a proper conjugate field to define the spin glass susceptibility, see [22, 62].
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Figure 1. (a) Energy e per spin plotted versus inverse temperature β = 1/T for different system
sizes (curves with symbols). The bold solid curve shows the one-step replica-symmetry-breaking
solution of De Santis et al [13, 53], the broken curve—which coincides with the former for
T � T0—is the replica-symmetric solution, equation (25). The thin vertical lines indicate the
inverse temperatures βD (left) and β0 (right) of the dynamical transition and the static transition,
respectively. (b) Analysis of the size dependence of the energy difference eN (T )−e∞(T ), using the
one-step replica-symmetric solution of De Santis et al [13] to calculate e∞(T ). The inset shows the
data for T = TD = 1.142 plotted versus N−2/3 instead of N−1. (c) Entropy s per spin, normalized
by its high-temperature value, plotted versus inverse temperature for different system sizes (curves
with symbols). The bold dashed curve and the bold solid curve are the replica-symmetric solution
and the one-step replica-symmetry-breaking solution, respectively. Vertical arrows indicate the
static inverse transition temperature β0 and the inverse of the ‘Kauzmann temperature’ βK , where
the entropy of the replica-symmetric solution vanishes.

from the disordered phase to the collinear ferromagnetic phase, discussed in section 2, is not
above T0 [7, 11]. TF is given by the following equation, for arbitrary p [7]:

T −1
F = J̃0

(p − 2)

[
−1 +

√
1 + 2(p − 2)/J̃ 2

0

]
. (27)

De Santis et al [13] used J̃0 = 1
2 (4 − p) in which case TF = Ts = 1, independently of p.

However, this case is rather special since then the temperature T2 of the transition to the
randomly canted ferromagnetic phase, discussed in the introduction, coincides with Ts = 1, as
can be seen from equation (5). For our choice of J̃0 = 3−p we have instead T2 = 1/2 for all p
and TF = 8/(7−√

65) ≈ 0.531 forp = 10. Thus with this choice we hence make sure that the
ferromagnetic fluctuations are still very small at Ts = 1, even if the system size is rather small.
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We now present our numerical results and compare them to the analytical predictions that
we just discussed. Figure 1(a) shows a plot of the internal energy versus inverse temperature,
over a wide temperature range (0.7 � T � 2), but still clearly above the temperatures TF and
T2 (remember that βF ≡ 1/TF ≈ 1.88, β2 ≡ 1/T2 = 2.0). Also included are the theoretical
predictions forN → ∞ obtained within the replica-symmetric and one-step replica-symmetry-
breaking theory, respectively. This figure reveals unexpectedly large finite-size effects over a
broad temperature regime in that, e.g., the energy for N = 640 coincides with the asymptotic
result only if β � 0.6. For β � 0.6 clear deviations from the asymptotic solution are visible,
which are larger for smaller N . The numerical data for finite N , in the range accessible to
our work, reveal only a smooth crossover from the regime of the disordered high-temperature
phase to the regime of the low-temperature glass-like phase, and no indication of the kink at β0,
predicted by the one-step replica-symmetry-breaking theory, is yet visible. As expected even
for N → ∞, there is no effect of the dynamical transition at βD ≡ 1/TD on static quantities
like the energy.

Of course it is also of interest to study how at fixed temperature the energy eN(T ) converges
to its asymptotic limit e∞(T ). Figure 1(b) shows that the energy difference eN(T ) − e∞ (T )

scales like N−1 both for temperatures above the static transition temperature T0 and for
temperatures below T0, while at T0 a different law,

(∝ N−2/3
)
, seems to hold (see the inset).

(Note that we plot here data for TD instead of T0 since we have simulated more system sizes at
this temperature. However, since the two temperatures are so close to each other this difference
should not matter for the system sizes investigated here.)

We have also calculated the temperature dependence of the entropy s(T ). This was done
by a thermodynamic integration [52] of the free energy f :

s(β) = βe(β) − β̄f (β̄) +
∫ β

β̄

e(β) dβ. (28)

We have used β̄ = 0.5, a temperature at which our data are no longer sensitive to finite-size
effects and thus the replica solution is valid, so we can use for the free energy β̄f (β̄) =
βe(β̄) − s(β̄) the mean-field value −9/16 − log(10) (see equation (25)). The integral over e
was done by using a spline interpolation of our data, with 180 points for N = 160, 320, 640
and 100 points for N = 1280, 2560. We think that alternative methods for calculating e(T ),
such as re-weighting techniques or methods of directly sampling the density of states [48],
would not provide a significant advantage in our case. The results are shown in figure 1(c)
from which we recognize that s(T ) shows similar finite-size effects to the energy e(T ).

From equation (25) we see that the entropy at the static transition is

s(T0) = ln 10 − 9
4 (Ts/T0)

2 ≈ 0.544 i.e. s(T0)/s(T = ∞) ≈ 0.236. (29)

Thus we see that, while at the static transition temperature T0 the entropy has decreased to
less than a quarter of its high-temperature value, it is clearly non-zero (and non-negative,
of course). In supercooled liquids one often extrapolates the temperature dependence of
the entropy (minus the vibrational entropy of the crystal) to zero and uses this to define the
Kauzmann temperature TK [31]. If one proceeds in the same way with the current model to
obtain a ‘Kauzmann temperature’ TK where the entropy of the metastable high-temperature
phase vanishes, one obtains from equation (25)

TK/Ts = 3
2 (ln 10)−1/2 ≈ 0.9885 (30)

which is even below the ‘true’ metastability limit Ts = 1 of the disordered phase, where
the (extrapolated) static glass susceptibility is divergent. (Note that the proximity of TK
and Ts happens coincidentally for p = 10. For example, for p = 5 the general result [7]
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Figure 2. Inverse of the reduced spin
glass susceptibility χ̃SG versus the square of
inverse temperature for different system sizes
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TK/Ts = [
1
4 (p − 1)/ lnp

]1/2
implies TK/Ts ≈ 0.7882.) Also a strictly linear extrapolation

of s(T ) from Ts or T0 down to a temperature where this extrapolation would vanish does not
give a meaningful result, of course.

These results show that the idea of locating the static glass transition temperature by an
extrapolation of the (configurational) entropy function s(T ) in the disordered high-temperature
phase to s(T = TK) = 0 [31, 32] can be completely misleading, even for a mean-field model
that does indeed exhibit both a dynamical transition (at TD) and a static transition (at T0). While
TK is always lower than T0, it does not coincide with the stability limit of the metastable high-
temperature phase, and thus lacks any physical significance. Since for the case of polymers
theories were formulated that suggest that TK is the static glass transition temperature [32],
it is interesting to note that a simulation study of the glass transition in the framework of the
bond-fluctuation model found a decrease of s from its high-temperature value to about 1/4 of
this value, when T is lowered, but that subsequently the curve s(T ) versus T bends over and
a well-defined TK does not exist [54]. The ‘configurational entropy’ estimated by Gibbs and
DiMarzio [32] was simply the total entropy of their lattice model of polymers, just like the
total entropy of our model shown in figure 1(c). Thus this demonstrates that the TK calculated
in this way is most probably wrong. Of course, this ‘naive’ way to define the Kauzmann
temperature via the vanishing of the (configurational) entropy s(T ) should not be confused
with the approach of defining a ‘complexity’ [5, 22–27, 70]. In that approach one determines
the number of basins in the free energy and defines TK as that temperature at which this number
starts to become exponentially large.

Note that in general one has to distinguish the ‘complexity’ from the configurational
entropy (e.g. in a real structural glass this quantity is defined by subtracting the vibrational
entropy from the total entropy of the glass), although in much of the literature on mean-
field models (which lack any vibrational entropy, like the present one) the complexity is also
called configurational entropy, unlike the nomenclature used here. A quantitatively reliable
estimation of the complexity for the present model is rather difficult since the temperature
interval of interest (T0 < T < TD) where the complexity is meaningful (basins of phase space
separated by infinitely high barriers in the thermodynamic limit) is very narrow.

Figure 2 shows the reduced spin glass susceptibility as a function of the squared inverse
temperature. This representation is adapted to the theoretical temperature dependence of this
quantity—see equation (26)—which predicts at T −2-law at high temperatures. As expected
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already from the behaviour of the internal energy, even far above Ts and T0 the convergence to
the thermodynamic limit is rather slow. Unfortunately the analysis of the finite-size behaviour
of χ̃SG is not straightforward, as we will show in the following. For T < T0 and N → ∞,
equations (10) and (22) imply

χ̃−1
SG = p − 1

Nq2
0

1

(1 − T/T0)
(31)

since for T < T0 our definition for χ̃SG, equation (10), simply picks up a contribution due to the
non-zero spin glass order parameter q0. As a result, χ̃−1

SG forN → ∞ should follow the straight
dashed line in figure 2 that represents the replica-symmetric solution for all T −2 < T −2

0 , while
for T −2 > T −2

0 , χ̃−1
SG simply converges towards the abscissa. This singular behaviour of χ̃−1

SG

is explained further in the inset, where we have added to χ̃−1
SG the term (Ts/T )

2. This sum
gives unity for T > T0 and (Ts/T )

2 for T < T0, as can be seen from equation (26). For
very large but finite N , χ̃−1

SG for T < T0 exhibits a Curie–Weiss-type divergence at T0, but
the amplitude of this effect is only of order 1/N , as can be seen from equation (31). In order
to analyse the finite-size rounding of this singularity, one must consider that for N finite the
δ-functions in equation (22) are broadened into peaks of finite height and non-zero width4.
Our simulation results for P(q)—see figure 3—do indeed give evidence that a second peak at
q0 �= 0 develops, distinct from the peak at small q that exists also in the high-temperature phase.
However, the statistical accuracy of P(q) is not very high due to the well-known fact that in
the ordered phase this quantity is not self-averaging [22–27], and the number of realizations
of the random couplings that we were able to study is insufficient to overcome this problem.
Hence we are currently not able to do a proper analysis of the finite-size effects of P(q)—see
figure 3(b)—and thus cannot make a finite-size analysis of χ̃SG.

From figure 3(a) we see that even in the high-temperature phase, i.e. for T > T0, we see a
peak in P(q) at a finite value of q. That this is, however, a finite-size effect is demonstrated in
figures 3(b) and 3(c) where we plot P(q) for different system sizes and show the first moment
of P(q) as a function of N , respectively. We see that for temperatures well above T0 the first
moment vanishes like N−1/2. However, close to T0 this type of extrapolation would give a
finite value of the moment. If instead an extrapolation with N−1/3 is done—see the inset—one
finds again as expected that the moment vanishes. Note that for the second moment of P(q)
we would have at T = T0 again a scaling of the type N−2/3, as we found for the case of
the energy. It is interesting to note that Parisi et al [71], making use of a replica-symmetry-
breaking scheme, were able to calculate the finite-size scaling exponents for the Ising spin
glass, and obtained that

[〈
qk
〉]

scales like N−k/3 at the critical temperature (consequently one
has that e scales like N−2/3). It is thus possible that the same kind of scaling holds also for
the Potts glass, although one has to keep in mind that the natures of the transition and of the
replica-symmetry-breaking pattern are different.

While the results shown so far demonstrate a rather encouraging qualitative consistency be-
tween the theoretical predictions and the numerical data, our results for the fourth-order cumu-
lant g4, equation (11), and the Guerra parameterG, equation (12), are clearly rather worrisome
(figure 4). It is seen that the three curves for g4(N, T ) have a rather well-defined common inter-
section point at T ≈ 1.31, and the three curves forG(N, T ) have a rather well-defined common
intersection point at T ≈ 1.24. On the basis of standard knowledge and experience with finite-
size scaling at second-order [48,55] and first-order [48,56] phase transitions, such intersection
points are commonly taken as estimates of the transition temperature [22–27]. However, the

4 A phenomenological attempt to describe the finite-size behaviour for the glass transition of Potts models has been
made in [16], but this approach is not followed up here, since it is not consistent with equation (22) in the limit of
N → ∞.
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comparison with the exact result for T0, equation (24), shows that these intersection points are
spurious, and hence cannot be taken as accurate estimates of T0. This is already obvious from
the data alone, because the two quoted temperatures are not in mutual agreement. We think that
in reality neither the three curves for g4(N, T ) nor those forG(N, T ) intersect at a unique tem-
perature. Given the relatively large error bars of the data, they can only define temperature inter-
vals �Tg4, �TG, in which the three intersection points fall. As N → ∞, presumably all of the
temperatures of these intersections converge (slowly!) towards T0. Since T0 falls distinctly out-
side the above intervals, this method of searching for intersection points, which is so successful
for locating phase transitions in pure systems [48,55,56], is a complete failure here. We empha-
size this problem so strongly because such techniques are commonly used for studying phase
transitions in systems with quenched disorder [27]. Again we stress that analytical guidance for
the description of the finite-size rounding of first-order glass transitions would be very useful.

The question of finite-size effects at a first-order transition in a disordered system has
also been addressed by Stiefvater et al [57] in the context of the capacity problem in the
Hopfield model. These authors assumed that the fractions f, 1 − f of the two phases scale as
f/(1−f ) ≈ exp{a−Nb(α−αc)}, where a, b are constants andα is the control parameter of the
model, αc being the transition point. However, this form implies that in the thermodynamic
limit f = 1 for α < αc and f = 0 for α > αc, just as for standard first-order phase
transitions which have a latent heat. If this ansatz is true for the Hopfield model, it completely
differs from our case where the weight of the ordered phase vanishes continuously rather than
discontinuously, f ∝ (1 − T/T0) as T → T0, in the thermodynamic limit (see figure 5(b)).

4. Dynamical properties in the high-temperature phase

In this section we briefly review the theoretical predictions for the relaxation dynamics of the
spins. Subsequently we compare these predictions with the results from the simulations.

The theoretical results of Kirkpatrick et al show that the Potts glass with p > 4 states
has a ‘dynamical transition’ at a temperature TD > T0, where non-ergodicity sets in [5]. For
T � TD , the spin-correlation function C(t), defined in equation (13), no longer decays to zero
but gets stuck for t → ∞ at a non-zero value qEA(T ), with [13]

TD = 1.142 qEA(T = TD) = 0.328. (32)

The details of this transition from ergodic (for T > TD where C(t → ∞) = 0) to non-ergodic
behaviour (for T < TD), as well as the time dependence ofC(t) for temperatures around TD are
in fact described by equations [5] formally analogous to equations proposed for the structural
glass transition by idealized mode-coupling theory [6]. The qualitative behaviour of various
quantities expected for N → ∞ is sketched in figure 5. Note that for T > TD and T < T0 we
have q0 = qEA. In the temperature range T0 < T < TD we have, however, q0 = 0 and qEA > 0.

In figure 6(a) we show the time dependence for the spin-autocorrelation function C(t) for
N = 1280 and all temperatures investigated. Here and in the following we will measure time
in units of Monte Carlo steps (MCS), i.e. the average number of updates per spin. Surprisingly
we see that even for this rather large system size there is not yet any clear evidence for the
development of a plateau for temperatures around TD . Note that in the thermodynamic limit
this function should at T = TD decay to qEA, i.e. the horizontal line. In contrast to this, our
system with a finite size is always ergodic, since the free-energy barriers separating the various
‘valleys’ in phase space remain finite at all non-zero temperatures. Of course every finite sys-
tem with no hard-core interactions is in principle ergodic. However, e.g. in structural glasses
it is found that even a few hundred particles are sufficient to show a pronounced (effective)
ergodic-to-non-ergodic transition. Thus it is rather astonishing that for the present model the
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Figure 5. (a) A qualitative sketch of the mean-field predictions for the p-state Potts glass model
with p > 4. The spin glass order parameter, qEA, is non-zero only for T < T0 and jumps to zero
discontinuously at T = T0. The spin glass susceptibility χSG follows a Curie–Weiss-type relation
with an apparent divergence at Ts < T0; see equation (21). The relaxation time τ already diverges
at the dynamical transition temperature TD . This divergence is due to the occurrence of a long-lived
plateau of height qEA in the time-dependent spin-autocorrelation function C(t). From Brangian
et al [58]. (b) The temperature dependence of q0 and w(T ) (see equation (22)) for p = 10, as
obtained from the one-step replica-symmetric solution of De Santis et al [13].

finite-size effects are so strong that even for N = 1280 and at T = TD the existence of a
plateau can hardly be seen.

Also the time dependence of CRI (t)—equation (14)—shows strong finite-size effects, as
can be seen from figure 6(b). We see that, contrary to naive expectation, the long-time limit of
CRI (t) is not zero but a finite constant. This constant depends on temperature and below we will
discuss its origin and its dependence on system size in more detail. At any rate, we see that this
correlation function also does not show a plateau even if T is close to TD and hence we conclude
that CRI (t) also converges only very slowly to its behaviour in the thermodynamic limit.

In order to discuss the system size dependence of the correlation functions in more detail
we show in figure 7 C(t) and CRI (t) for different system sizes and two temperatures. From
figure 7(a) we see that, at high temperatures, C(t) shows basically no system size dependence.
For low T , however, the relaxation becomes quickly slower with increasing system size and
also the shape of the curve changes noticeably. But even at the largest system sizes accessible
at this temperature we are not able to see a clear two-step relaxation such as one would expect
for a sufficiently large but finite system.
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Figure 6. (a) The time dependence of the correlation functionC(t)—equation (13)—forN = 1280
and various temperatures. Also included are data for the predicted values of the static, T0, and
dynamic, TD , transition temperatures. The horizontal straight line shows the theoretical prediction
from [13] for the Edwards–Anderson order parameter at TD , qEA = limt→∞C(t); cf. equation (32).
(b) The same as (a), but for the rotationally invariant correlation function CRI (t) defined in
equation (14).

The N -dependence is different in the case of CRI (t); figure 7(b). Here we see that even
at high temperatures the correlation function depends on the system size. This is in agreement
with the arguments given in the context of equation (14) that CRI (t → ∞) should scale like
1/

√
N . That one actually find this size dependence is shown in the inset of figure 7(b).

Instead of studying the function CRI (t) one could of course try to consider the reduced
normalized function φ(t) = [CRI (t) − CRI (t → ∞)]/[CRI (0) − CRI (t → ∞)]. However,
this type of correlation function also has its problems since on one hand the final asymptote
CRI (t → ∞) is only known to within a certain statistical error, and on the other hand it shows
finite-size effects at high temperatures at short times, i.e. whereCRI (t) is independent ofN . In
view of these problems withCRI (t)we will in the following focus onC(t) only. However, this
is not a serious restriction, since in the thermodynamic limit these two functions should show
at low temperatures the same time dependence anyway. That this is indeed the case for the
simulations can be inferred from figure 7(c) where we show a parametric plot of CRI (t) versus
C(t) at TD . We see that with increasing system size the curves do approach the diagonal, as
expected.

We now address the dependence on temperature and N of the relaxation time τ of the
system. One possibility for defining τ is

C(t = τ) = 0.2. (33)

Note that although the value 0.2 is somewhat arbitrary, it is a reasonable choice. The only
important thing is that it is significantly less than the height of the plateau in the thermodynamic
limit, qEA(T = TD); cf. equation (32). (If we defined a time τ ′ as C(t = τ ′) = 0.5, on the
other hand, τ ′ would be finite also below TD , and even below T0, until qEA(T ) had increased
up to qEA = 0.5, due to the temperature dependence of the order parameter; see figure 5(a).)

Since for N → ∞ the dynamics of the model should be described by (idealized) mode-
coupling theory [5], we expect τ(T ) to show a power-law divergence at TD [6]:

τ ∝ (T /TD − 1)−� N → ∞ (34)

where � is an exponent which is non-universal (i.e. model dependent), but typically not very
different from � ≈ 2. In order to test the validity of equation (34), one can plot τ−1/� for a
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Figure 7. (a) The time dependence of the correlation function C(t) for T = 1.8 and for
T = TD = 1.142 for several values of N . The solid line shows the theoretical value of the
Edwards–Anderson order parameter qEA(TD) for N → ∞ [13]. The dashed line shows the value
that we use to define the relaxation time τ . From Brangian et al [58]. (b) The time dependence
of the rotationally invariant correlation function CRI (t) for T = 1.8 and for T = TD = 1.142 for
several values of N . The inset shows the limiting value CRI (t → ∞) as a function of N−1/2 for
T = 1.8. (c) A parametric plot of CRI (t) versus C(t) at T = TD for different values of N . The
filled square indicates the plateau value obtained for N → ∞. The bold straight line displays the
relation CRI (t) = C(t), believed to hold for N → ∞.

reasonable trial value of� and look at whether the data are compatible with a straight line over
a reasonable range of temperature. If this is the case then the extrapolation to τ−1/� = 0 should
give an estimate for TD . Figure 8 shows that for� = 2.0 the data are indeed rectified for 1.1 �
T � 1.4, while outside of this temperature range the curves bend. Since plots for other reason-
able choices of � look quite similar, the value of � can be estimated only within ±0.5. In all
cases it is difficult to use the estimates for TD for finiteN to extrapolate to the value of TD in the
thermodynamic limit, since the N -dependence is rather weak and the error bars of TD(N) are,
due to the above-mentioned extrapolation, quite substantial. For the case of � = 2.0 a depen-
dence of the formTD(N)−TD(∞) ∝ 1/N seems, however, to be compatible with the data [51].

In order to provide a more systematic way of extrapolating the relaxation times to the
thermodynamic limit, we assume that the dynamical finite-size scaling hypothesis [55,59,60]
holds and make the ansatz

τ = Nz∗
τ̃
{
N(T/TD − 1)�/z∗}

for N → ∞ and (T /TD − 1) → 0. (35)
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The scaling function τ̃ (ζ ) must obey τ̃ (ζ → ∞) ∝ ζ−z∗
to recover the proper thermodynamic

limit, i.e. equation (34 ). Using z∗ as a fit parameter (� is fixed to 2.0), we thus can try to generate
a master curve from the τ(T ) curves for the different system sizes N . That this is indeed
possible if one chooses z∗ = 1.5 is shown in figure 9. From this figure we see that for large
arguments the master curve does indeed show the expected power law with an exponent −z∗

(dashed line). For T = TD the argument of τ̃ vanishes and hence we expect an N -dependence
of τ of the form τ ∝ Nz∗

, and the inset of figure 9 shows that this is indeed the case.
We mention that equation (35) has a firm theoretical foundation for second-order phase

transitions [22, 55, 59, 60], i.e. the case in which in figure 5 the temperatures T0, TD and
Ts coincide at a unique critical temperature Tc. The diverging relaxation time is then an
immediate consequence of a diverging static susceptibility, and dynamic finite-size scaling is
a consequence of ordinary dynamic scaling [60]. For example, for second-order transitions of
mean-field spin glass models one has equation (35) with �/z∗ = γMF + 2βMF = 3, since the
static mean-field exponents of the spin glass order parameter and susceptibility are βMF = 1
and γMF = 1, respectively [22]. Using the value of � = 2 [22], one hence finds for z∗ the
value 2/3. This result could be expected since the standard finite-size scaling result for the
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critical relaxation in spin glasses with short-range interactions is τ ∝ Lz with z = 4 in the
mean-field approximation [22]. (Here L is the linear dimension of the system.) This result
can now be translated into the behaviour of infinite-range models at the marginal dimension
d∗ = 6, i.e. at the dimension where mean-field theory becomes valid, via N = Ld∗

, which
yields τ ∝ Nz/d∗ = Nz∗

, i.e. z∗ = z/d∗ = 2/3. This result is also compatible with numerical
simulations [61]. However, the value z∗ ≈ 1.5 found for the present model is clearly rather
unusual and we are not aware of any analytical estimates for this exponent.

A further interesting question concerns the asymptotic decay of the correlation function
C(t) towards qEA as t → ∞ at T = TD . In the context of the structural glass transition, the
time regime during which the correlation functions are close to the plateau is called the ‘β-
relaxation’ whereas the decay below the plateau is called the ‘α-relaxation’ [6]. Mode-coupling
theory predicts that at TD the approach to the plateau is given by a power law, i.e.

C(t) − qEA ∝ t−a T = TD. (36)

Unfortunately, due to the lack of clear evidence for a plateau in our data, we cannot present
a fully convincing test of this prediction although we have evidence that our data are indeed
compatible with the dependence given in equation (36) [51].

Two other important results from mode-coupling theory concern the shape of the
correlators close to TD in the α-relaxation regime, i.e. in the time window where they fall under
the plateau. The theory predicts that in this time regime the correlators can be approximated
well with the Kohlrausch–Williams–Watts function, exp(−(t/τ )β), a functional form that has
been found to work very well in many glassy systems [6, 33, 35, 39]. We find, however, that
even close to TD and for the largest systems used, this functional form does not give a good fit
to the data.

The second prediction of the theory concerning the α-relaxation is the so-called time–
temperature superposition principle. This principle implies that the correlator C(t) can be
written as

C(t, T ) = C̃(t/τ (T )) (37)

where C̃(x) is a temperature-independent scaling function. The validity of equation (37) can
be checked if one plots C(t, T ) versus x = t/τ (T ). If the superposition principle is valid, the
curves for the different temperature should fall on a master curve for x ≈ 1 and large x. For very
small values of x, i.e. in the early β-regime, no master curve is expected, since equation (37)
is supposed to hold only in the α-regime. Figure 10 shows this kind of scaling plot and we see
that even for a rather large system,N = 1280, there is no indication of such a time–temperature
position principle. Of course, it is possible that this failure to bear out equation (37) is simply
due to finite-size effects. Thus, it would be desirable to check equation (37) for much larger
systems. However, in view of the strong size effects on the relaxation time τ near and below
TD—see figure 12 below—this is impossible for us with the present computer resources.

Although we have just seen that the time–temperature superposition principle does not
hold close to TD for the accessible system sizes, it is interesting to see whether this is the
case also at lower temperatures. For N = 160 we have been able to go to temperatures as
low as T = 0.7, and in figure 11 we show the correlator as a function of t/τ . If the curves
for all temperatures are considered, one finds that the superposition principle again does not
hold (main figure). However, if one uses only the curves for the lowest temperatures—see
the inset—one finds that they all collapse onto a nice master curve. Thus we conclude that at
sufficiently low temperatures the time–temperature superposition principle does indeed hold.
We mention also that the shape of this master curve is not an exponential, but that a stretched
exponential with an exponent around 0.43 gives a satisfactory fit.
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Figure 10. A plot of C(t) versus t/τ (where τ is defined
via C(t = τ) = 0.2; cf. equation (33)), for N = 1280.
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Figure 11. A plot of C(t) versus t/τ for N = 160. The
temperatures are T = 0.7, 0.765, 0.85, 0.9, 0.95, 1.0,
1.142 and 1.17 (left to right). The inset shows the same
data, but including only the three lowest temperatures.
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In order to be able to understand this result a bit better, one needs to understand in more
detail the relaxation of our model for T < TD and finite N , where all free-energy barriers in
phase space must obviously be still finite. One could argue that at low temperature the largest
barrier dominates the dynamics and hence the relaxation depends on temperature only via a
temperature-dependent prefactor. This temperature dependence would have to be Arrhenius-
like, and in order to check this we show in figure 12 the T -dependence of τ for the different
system sizes.

From this figure we see that at the lowest temperatures the T -dependence of τ for the
smallest system is indeed Arrhenius-like. For temperatures around TD and higher, one sees
however significant deviation from this type of temperature dependence. Also forN = 320 one
can see at the lowest temperature an Arrhenius law, but the activation energy is significantly
larger than the one for N = 160. Since for increasing system size the lowest accessible
temperature becomes higher and higher, it is not possible to see any longer the crossover from
the non-Arrhenius T -dependence at intermediate temperatures to the Arrhenius dependence
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at small T . But the plot clearly shows that at TD the relaxation times increase quickly with
increasing system size, in agreement with the result from figure 9 (inset). Due to our present
inability to equilibrate larger systems also significantly below TD , we cannot determine reliably
the N -dependence of the activation energy of the Arrhenius law found at low temperatures.
We mention that MacKenzie and Young found for the SK model, i.e. the mean-field Potts glass
for p = 2, that for small systems (N � 128) and low temperature (T = 0.6TD = 0.6Ts) the
relaxation times increase like τ(N) ∝ exp(const×N0.5) [63] whereas in a recent paper Billoire
and Marinari [64] give evidence that the exponent of the power law is 1/3. If we consider a
low temperature, T = 0.7, this type of N -dependence of τ is compatible with our data with
an exponent 0.5. However, if we determine the N -dependence of the activation energy in the
temperature regime where τ(T ,N) shows an Arrhenius law, we find that this energy increases
only very slowly, i.e. like log(N) or a power of N with a small exponent (≈0.1 = 1/p). (Note
that the reason for the two different N -dependencies is related to the fact that the prefactor of
the Arrhenius law depends on N also.)

Figure 12 shows clearly that for small systems, N = 160, 320 and 640, it is possible to
explore the region of temperatures below both the dynamical and the static transition. Note
that in simulations of models for the structural glass transition [39] it has never been possible
to explore such low temperatures for comparable numbers of particles5. On the other hand,
such models [39] do not seem to be much plagued by finite-size effects, although for certain
models for structural glasses they have recently been found [69].

5. Relaxation of individual spins in the low-temperature phase

In the previous section we have investigated the relaxation dynamics of the whole system and
found that at low temperatures it shows a non-Debye behaviour. In the present section we
focus on the dynamics of the individual spins in order to obtain a better understanding of the
occurrence of this non-exponentiality.

In recent years it has been recognized that the non-exponential relaxation in supercooled
liquids is often related to the so-called ‘dynamical heterogeneities’ [45, 46]. This means that
the details of the relaxation dynamics of the individual particles (relaxation time, amplitude
of the α-relaxation etc) is different for each different particle. The reason for this difference is
(most likely) the fact that each particle has a slightly different neighbourhood which thus affects
the dynamics of the particle. Note that these differences are present only on the timescale of
the α-relaxation τ , since afterwards the particle has changed its neighbourhood and hence
its characteristic dynamics. If the dynamics is averaged over a time much larger than τ , all
the particles behave in the same way. For spin glasses this is different, since the disorder is
quenched. Hence the nature of the dynamics of the individual spins is an intrinsic property
of each spin, since each spin is connected to the other ones by a set of different coupling
constants. For a spin glass with short-range interactions it is therefore not surprising that
each individual spin has a different relaxation dynamics, and this is indeed what has been
found in simulations [66]. For spins systems with long-range interactions the presence of
such dynamical heterogeneities is, however, not that clear, since each spin interacts with many
different ones and hence one might argue that on average the different spins show the same
relaxation dynamics. The goal of this section is to investigate this point in more detail.

5 An exception is furnished by simulations of strong glass formers. For example, in [65] it was shown that the
system could be equilibrated even at temperatures as low as 0.8TD . However, this was still way above the Kauzmann
temperature.
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(a)

(c)

(b)

Figure 13. The time dependence of the single-spin-autocorrelation function Ci(t) at T = TD for
N = 160 (a), N = 320 (b) and N = 640 (c). Each of the curves corresponds to a different spin.

In order to characterize the dynamics of the individual spins we have calculated the
autocorrelation functions Ci(t) for spin number i:

Ci(t) = 1

p − 1
〈�Si(t ′) · �Si(t ′ + t)〉. (38)

Note that, in contrast to the case for structural glasses, it is here possible to average the
right-hand side over different time origins t ′, without losing the information on the identity of
the spin. Due to the single-spin nature of the correlation function Ci(t), it is necessary to make
this average over a sufficiently long time in order to obtain a reasonable statistics. We found
that an average over 1000 α-relaxation times is needed, and therefore the following results
have been obtained only for relatively small system sizes and 10 different samples for every
temperature investigated.

In figure 13 we show the time dependence of Ci(t) for all the spins i = 1, . . . , N for three
different system sizesN . The temperature isTD , i.e. the dynamical critical temperature at which
the average relaxation dynamics, as measured by C(t), is already strongly non-exponential.
From the figure we see that the relaxation dynamics for the different spins depends strongly
on these spins in that, e.g., they relax to zero on timescales that span more than an order
of magnitude. At a time where the correlation functions have reached 0.5 of their initial
value, the width of the range is even higher and increases rapidly with increasing system size.
Furthermore, we see from the figures that the curves for the individual spins seem to occur in
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(a) (b)

Figure 14. The time dependence of the single-spin-autocorrelation function Ci(t) at T = 0.9 for
N = 160 (a) and for N = 320 (b). Each of the curves corresponds to a different spin.

clusters, i.e. that they do not fill the interval between the slowest and the fastest relaxation in
a homogeneous way. Below we will discuss the reason for this clustering in more detail.

In figure 14 we show the single-spin-autocorrelation function at a lower temperature.
Comparing these curves with the ones in figures 13(a) and 13(b) we see that a decrease of
T has made the distribution of the relaxation dynamics even wider. Also the presence of the
clustering of the curves is now much more pronounced. From figure 14 one also recognizes
that the shape of the individual curves is not uniform at all, since the ones which decay slowly
tend to be, in the α-regime, much steeper than the ones that decay more rapidly. A more careful
analysis shows that these slow spins show a more or less exponential relaxation whereas, as
can already be seen from the figure, the fast ones show a strong deviation from a Debye law.
Thus we conclude that the non-Debye behaviour of C(t) found at low T—see figure 11—is
not due to a superposition of Debye laws with different relaxation times, but the sum of various
different processes, some of which are Debye-like, some of which are not.

In order to understand the microscopic reason for the presence of these dynamical
heterogeneities a bit better we have investigated to what extent the relaxation dynamics of
an individual spin correlates with other quantities. For this it is necessary to characterize this
dynamics in some way. As discussed above, the shape of the curves is not at all uniform,
which makes such a characterization rather difficult. Therefore we decided to neglect all the
variations of the shape completely and to characterize each curve just by the time that it takes
the spin to decay to a given value. Therefore we defined two different relaxation times, τ (0.4)i

and τ
(0.7)
i , via

Ci(t = τ
(0.4)
i ) = 0.4 and Ci(t = τ

(0.7)
i ) = 0.7. (39)

In figure 15 we show a scatter plot between 〈ei〉, the average energy of spin i, and the
relaxation time, for both definitions of τi . We see that there is indeed a significant correlation
between the energy and the relaxation time in that spins with high energy relax faster than the
ones with low energy. This result is very reasonable since a spin that has a low energy will be
reluctant to change its value and therefore to go (with high probability) to a state with a higher
energy. From the figure we also recognize that the correlation is present for both definitions
of τi , from which we conclude that the details of this definition are not crucial.

In order to investigate this point a bit more closely we show in figure 16(a) a scatter plot
of the relaxation time τ (0.7)i versus τ (0.4)i for the two temperatures. We see that although the
correlation is not perfect, it is still very significant and therefore we conclude that the salient
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of the relaxation times τ (0.4)i and τ
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Each point corresponds to a different spin.

features of the correlation between the relaxation time and the mean energy shown in figure 15
will be observed even if a more careful characterization of the relaxation dynamics is made.

Of further interest is the question of how the relaxation time of a given spin at a given
temperature is related to the relaxation time of the same spin at a different temperature.
This dependence is related to the question of ‘chaos in temperature’, i.e. how the properties of
a system change if temperature is changed. For a mean-field-type system these dependencies
are expected to be rather weak [67, 68]. In agreement with this expectation, we find that the
relaxation times τi for T = 0.9 are indeed strongly correlated with those at T = 1.142—
see figure 16(b)—irrespective of the definition of τi . Thus we see that this property seems
not to be strongly affected by finite-size effects. In passing, we also mention that the mean
energies 〈ei(T )〉 between the two temperatures are even more strongly correlated than the
relaxation times [51].

Before we end, we come back to the observation discussed above that some of the single-
spin-autocorrelation functions occur in clusters (see figure 14). One potential reason for the
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Figure 17. Values of the bonds between spins with very slow
relaxation in ten different disorder realizations for 320 spins at a
temperature T = 0.9 (filled circles). For clarity the points have
been displaced vertically by various amounts. The continuous
curve shows the Gaussian distribution from which the Jij are
extracted and the vertical dashed line shows its mean.

relaxation dynamics of two spins to be similar is that they are coupled together strongly, i.e. that
their interaction constant Jij is large. In order to test this idea we identified for each realization
of the disorder those spins that formed at T = 0.9 the cluster that relaxed most slowly. (This
identification was done visually by means of plots like the one shown in figure 14(b).) Say that
this cluster involved k curves. We then determined the k(k−1)/2 interaction constants between
these k spins. The values of these constants are shown in figure 17 for ten different realizations
of the disorder (filled circles). Also included in the figure is the Gaussian distribution of the
coupling constants given by equation (2). From this figure we see that most of the points
corresponding to the couplings Jij are to the right of the mean of the distribution (vertical
dashed line). Hence we conclude that the spins that form the slow cluster of relaxation curves
are coupled together more strongly than two arbitrary spins and therefore form a ‘dynamic
entity’. We note, however, that the fact that two spins are strongly coupled does not necessarily
make them slow [51], which shows that such a strong coupling is only a necessary but not a
sufficient condition for a slow dynamics.

It is clear that the observations presented in this section are only modest first steps
addressing the dynamics of the individual spins in the low-temperature phase. It certainly
would be interesting and useful to understand better how the distribution of the relaxation
times of the spins depends on the system size and on temperature in order to obtain a better
comprehension of how the mean relaxation dynamics of the system is related to that of the
single spins. However, due to the high computational demand of this kind of investigation,
such studies have to be left to the future.

In this context, we draw attention to recent interesting analysis of dynamic heterogeneities
in short-ranged Ising spin glasses [72] and in a spin model based on random graphs [73]. While
these models are better understood, they are probably less connected to the structural glass
problem than the present one. Furthermore, we mention that recently Franz et al [74, 75]
have proposed a connection between a certain dynamical susceptibility and the dynamical
heterogeneities. Preliminary investigations have shown that this connection might work for
the present model as well [51] and we will report on this in more detail elsewhere [76].

6. Conclusions

In this paper, we have presented the first detailed Monte Carlo investigation of the ten-state
mean-field Potts glass model, for finite systems with sizes in the range from N = 160
to 2560 spins. In the thermodynamic limit, it is known that this model exhibits both a
dynamical transition at TD , where the system stops being ergodic, and a static transition
at T0 < TD , where a glass order parameter q appears discontinuously (figure 5(a)). The
static spin glass susceptibility χSG remains finite both at T0 and TD . It would diverge only
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at a still lower ‘spinodal’ temperature Ts < T0, if one were able to follow the disordered
branch of the free energy at temperatures less than T0. A further relevant temperature is the
‘Kauzmann’ temperature TK—figure 1(c)—defined from the condition that the entropy of the
high-temperature phase vanishes. The spin-autocorrelation functionC (t) decays with time t at
T � TD in a two-step process, and the lifetime τ of the ‘plateau’ diverges as τ ∝ (T − TD)

−�,
in the thermodynamic limit N → ∞ (figure 5(a)). This behaviour includes all qualitative
features that one expects to be present at the structural glass transition (note that the equation
of motion for C (t) are identical to the ones proposed by the popular idealized mode-coupling
theory for the structural glass transition!)

The questions asked in the present paper hence are as follows. Can we verify these predic-
tions from Monte Carlo simulations? How are the various transitions modified (i.e., rounded
off) by the finite size of the model systems considered? Answers to these questions are not only
of interest for a better understanding of the statistical mechanics of the present model system,
but also may be useful to help with the interpretation of simulations of models for the structural
glass transition. First of all, in the latter case the very existence of the various temperatures TD ,
T0, Ts , TK is still open to doubt. Secondly, even if one believes that these temperatures should
exist, their location for a particular model is still uncertain, unlike in the present case where we
have so much guidance from the exact solution. Of course, it is clear that a mean-field model is
a rather special limit, and the sharpness of the dynamical transition at TD is probably replaced
by a smooth crossover from rather fast relaxation to very slow relaxation as soon as one allows
the interactions to become short ranged. In this sense, the finite mean-field Potts glass (where
the singularity at TD is rounded by the finite size of the system) may be qualitatively similar
to the finite-range model (although one should not push this analogy too far).

Gratifyingly, we have established that the Monte Carlo results are qualitatively compatible
with the theoretical predictions, although the finite-size effects found were unexpectedly strong
(i.e. they occur over a very wide temperature range as well) and they are not understood in
detail, and hence we have found it too difficult to extract the various temperatures mentioned
above directly from the simulation itself. For example, for the sizes available, the methods
of looking for intersection points of the fourth-order cumulant or the Guerra parameter do
not allow a reliable estimation of T0 (figure 4). Similarly, one can estimate the temperatures
Ts (figure 2), TK (figure 1(b)) and TD (figure 8) from a naive analysis of the data only very
roughly. However, if one uses the theoretical knowledge on TD , one can estimate both the
exponent � mentioned above and the exponent z∗ for the size dependence of the time τ at TD
(namely τ ∝ Nz∗

) from a dynamical finite-size scaling analysis (figure 9).
We also analysed the modified disconnected cumulants proposed in [77], which should

give a better estimation of the spin glass transition temperature in systems exhibiting one-step
replica-symmetry-breaking patterns, but with the system sizes at our disposal they do not seem
to work better than the corresponding connected parameters [51].

Regarding the shape of the curves in the α-relaxation regime, we found that the expected
time–temperature superposition principle is not observed (figure 10).

Also some steps were taken to analyse the dynamics for T � TD , by investigating the
relaxation function Ci (t) of individual spins and corresponding relaxation times (figures 13–
16). We find that the reason for the observed non-exponential relaxation of the mean relaxation
functionC(t) is related to the presence of a very strong dynamical heterogeneity. Furthermore,
we found that certain spins form dynamical clusters, probably because of the strong bonds
between them. However, this mechanism seems not to be the only one, and hence this point
must be investigated in the future in more detail.

Thus, although many exact results are known for this model, and—unlike in models of
the structural glass transition—we can equilibrate the system also at temperatures significantly
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below TD for a range of sizes (N � 640), we are still not able to answer many questions.
Nevertheless, we think that the present model is a prototype model for glass transitions, and
if better simulation algorithms become available, further studies of the present model should
be very rewarding.
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[2] Bouchaud J-P, Cugliandolo L, Kurchan J and Mézard M 1998 Spin Glasses and Random Fields ed A P Young

(Singapore: World Scientific)
[3] Franz S and Parisi G 1998 Physica A 261 317
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